Dual-channel technology was created to address the issue of bottlenecks. Increased processor speed and performance requires other, less prominent components to keep pace. In the case of dual channel design, the intended target is the memory controller, which regulates data flow between the CPU and system memory (RAM). The memory controller determines the types and speeds of RAM as well as the maximum size of each individual memory module and the overall memory capacity of the system. However, when the memory is unable to keep up with the processor, a bottleneck occurs, leaving the CPU with nothing to process. Under the single-channel architecture, any CPU with a bus speed greater than the memory speed would be susceptible to this bottleneck effect.
The dual-channel configuration alleviates the problem by doubling the amount of available memory bandwidth. Instead of a single memory channel, a second parallel channel is added. With two channels working simultaneously, the bottleneck is reduced. Rather than wait for memory technology to improve, dual-channel architecture simply takes the existing RAM technology and improves the method in which it is handled. While the actual implementation differs between Intel and AMD motherboards, the basic theory stands.